Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Cancer Genet ; 282-283: 27-34, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183785

RESUMO

The current genomic abnormalities provide prognostic value in pediatric Acute Lymphoblastic Leukemia (ALL). Furthermore, Copy Number Alteration (CNA) has recently been used to improve the genetic risk stratification of patients. This study aimed to evaluate CNA profiles in BCR-ABL1-negative pediatric B-ALL patients and correlate the data with Minimal Residual Disease (MRD) results after induction therapy. We examined 82 bone marrow samples from pediatric BCR-ABL1-negative B-ALL using the MLPA method for the most common CNAs, including IKZF1, CDKN2A/B, PAX5, RB1, BTG1, ETV6, EBF1, JAK2, and PAR1 region. Subsequently, patients were followed-up by multiparameter Flow Cytometry for MRD (MFC-MRD) assessment on days 15 and 33 after induction. Data showed that 58.5 % of patients carried at least one gene deletion, whereas 41.7 % of them carried more than one gene deletion simultaneously. The most frequent gene deletions were CDKN2A/B, ETV6, and IKZF1 (30.5 %, 14.6 %, and 14.6 %, respectively), while the PAR1 region showed predominantly duplication (30.5 %). CDKN2A/B and IKZF1 were related to positive MRD results on day 15 (p = 0.003 and p = 0.007, respectively). The simultaneous presence of more than one deletion was significantly associated with high induction failure (p = 0.001). Also, according to the CNA profile criteria, the CNA with poor risk (CNA-PR) profile was statistically associated with older age and positive MRD results on day 15 (p = 0.014 and p = 0.013, respectively). According to our results, the combined use of CNAs with MRD results on day 15 can predict induction failure and be helpful in ameliorating B-ALL risk stratification and treatment approaches.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Variações do Número de Cópias de DNA/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Neoplasia Residual/genética , Receptor PAR-1/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Fatores de Transcrição/genética
2.
Arterioscler Thromb Vasc Biol ; 44(3): 603-616, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174561

RESUMO

BACKGROUND: Cleavage of the extracellular domain of PAR1 (protease-activated receptor 1) by thrombin at Arg41 and by APC (activated protein C) at Arg46 initiates paradoxical cytopathic and cytoprotective signaling in endothelial cells. In the latter case, the ligand-dependent coreceptor signaling by EPCR (endothelial protein C receptor) is required for the protective PAR1 signaling by APC. Here, we investigated the role of thrombomodulin in determining the specificity of PAR1 signaling by thrombin. METHODS: We prepared a PAR1 knockout (PAR1-/-) EA.hy926 endothelial cell line by CRISPR/Cas9 and transduced PAR1-/- cells with lentivirus vectors expressing PAR1 mutants in which either Arg41 or Arg46 was replaced with an Ala. Furthermore, human embryonic kidney 293 cells were transfected with wild-type or mutant PAR1 cleavage reporter constructs carrying N-terminal Nluc (NanoLuc luciferase) and C-terminal enhanced yellow fluorescent protein tags. RESULTS: Characterization of transfected cells in signaling and receptor cleavage assays revealed that, upon interaction with thrombomodulin, thrombin cleaves Arg46 to elicit cytoprotective effects by a ß-arrestin-2 biased signaling mechanism. Analysis of functional data and cleavage rates indicated that thrombin-thrombomodulin cleaves Arg46>10-fold faster than APC. Upon interaction with thrombin, the cytoplasmic domain of thrombomodulin recruited both ß-arrestin-1 and -2 to the plasma membrane. Thus, the thrombin cleavage of Arg41 was also cytoprotective in thrombomodulin-expressing cells by ß-arrestin-1-biased signaling. APC in the absence of EPCR cleaved Arg41 to initiate disruptive signaling responses like thrombin. CONCLUSIONS: These results suggest that coreceptor signaling by thrombomodulin and EPCR determines the PAR1 cleavage and signaling specificity of thrombin and APC, respectively.


Assuntos
Receptor PAR-1 , Trombina , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Células Endoteliais/metabolismo , beta-Arrestinas/metabolismo
3.
Cell Biol Int ; 48(4): 440-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115179

RESUMO

Kirsten rat sarcoma virus (KRAS) gene mutation is common in colorectal cancer (CRC) and is often predictive of treatment failure and poor prognosis. To understand the mechanism, we compared the transcriptome of CRC patients with wild-type and mutant KRAS and found that KRAS mutation is associated with the overexpression of a secreted serine protease, kallikrein-related peptidase 10 (KLK10). Moreover, using in vitro and in vivo models, we found that KLK10 overexpression favors the rapid growth and liver metastasis of KRAS mutant CRC and can also impair the efficacy of KRAS inhibitors, leading to drug resistance and poor survival. Further functional assays revealed that the oncogenic role of KLK10 is mediated by protease-activated receptor 1 (PAR1). KLK10 cleaves and activates PAR1, which further activates 3-phosphoinositide-dependent kinase 1 (PDK1)-AKT oncogenic pathway. Notably, suppressing PAR1-PDK1-AKT cascade via KLK10 knockdown can effectively inhibit CRC progression and improve the sensitivity to KRAS inhibitor, providing a promising therapeutic strategy. Taken together, our study showed that KLK10 promotes the progression of KRAS mutant CRC via activating PAR1-PDK1-AKT signaling pathway. These findings expanded our knowledge of CRC development, especially in the setting of KRAS mutation, and also provided novel targets for clinical intervention.


Assuntos
Neoplasias Colorretais , Receptor PAR-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
4.
BMC Med ; 21(1): 338, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667257

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS: A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS: The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-ß-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS: Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptor PAR-1/genética , Metaloproteinase 1 da Matriz , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias Pancreáticas
5.
J Thromb Haemost ; 21(12): 3640-3648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678550

RESUMO

BACKGROUND: The involvement of thrombin receptor PAR1 in blood vessel development has been largely demonstrated in knockout mice; however, its implication in adult mouse angiogenesis seems very moderate. OBJECTIVES: We aimed to explore the potential relationships between PAR1, stemness, and angiogenic properties of human endothelial colony-forming cells (ECFCs). METHODS AND RESULTS: PAR1 activation on ECFCs using the selective PAR1-activating peptide induced a significant decrease in CD133 expression (RTQ-PCR analysis). In line, silencing of PAR1 gene expression with siRNA increased CD133 mRNA as well as intracellular CD133 protein expression. To confirm the link between CD133 and PAR1, we explored the association between PAR1 and CD133 levels in fast and slow fibroblasts prone to reprogramming. An imbalance between PAR1 and CD133 levels was evidenced, with a decreased expression of PAR1 in fast reprogramming fibroblasts expressing a high CD133 level. Regarding in vitro ECFC angiogenic properties, PAR1 silencing with specific siRNA induced cell proliferation evidenced by the overexpression of Ki67. However, it did not impact migration properties nor ECFC adhesion on smooth muscle cells or human arterial endothelial cells. In a mouse model of hind-limb ischemia, PAR1 silencing in ECFCs significantly increased postischemic revascularization compared to siCtrl-ECFCs along with a significant increase in cutaneous blood flows (P < .0001), microvessel density (P = .02), myofiber regeneration (P < .0001), and human endothelial cell incorporation in muscle (P < .0001). CONCLUSION: In conclusion, our work describes for the first time a link between PAR1, stemness, and vasculogenesis in human ECFCs.


Assuntos
Células Endoteliais , Receptor PAR-1 , Humanos , Células Cultivadas , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Diabetes ; 72(12): 1795-1808, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722138

RESUMO

There is clinical evidence that increased urinary serine proteases are associated with the disease severity in the setting of diabetic nephropathy (DN). Elevation of serine proteases may mediate [Ca2+]i dynamics in podocytes through the protease-activated receptors (PARs) pathway, including associated activation of nonspecific cation channels. Cultured human podocytes and freshly isolated glomeruli were used for fluorescence and immunohistochemistry stainings, calcium imaging, Western blot analysis, scanning ion conductance microscopy, and patch clamp analysis. Goto-Kakizaki, Wistar, type 2 DN (T2DN), and a novel PAR1 knockout on T2DN rat background rats were used to test the importance of PAR1-mediated signaling in DN settings. We found that PAR1 activation increases [Ca2+]i via TRPC6 channels. Both human cultured podocytes exposed to high glucose and podocytes from freshly isolated glomeruli of T2DN rats had increased PAR1-mediated [Ca2+]i compared with controls. Imaging experiments revealed that PAR1 activation plays a role in podocyte morphological changes. T2DN rats exhibited a significantly higher response to thrombin and urokinase. Moreover, the plasma concentration of thrombin in T2DN rats was significantly elevated compared with Wistar rats. T2DNPar1-/- rats were embryonically lethal. T2DNPar1+/- rats had a significant decrease in glomerular damage associated with DN lesions. Overall, these data provide evidence that, during the development of DN, elevated levels of serine proteases promote an excessive [Ca2+]i influx in podocytes through PAR1-TRPC6 signaling, ultimately leading to podocyte apoptosis, the development of albuminuria, and glomeruli damage. ARTICLE HIGHLIGHTS: Increased urinary serine proteases are associated with diabetic nephropathy. During the development of diabetic nephropathy in type 2 diabetes, the elevation of serine proteases could overstimulate protease-activated receptor 1 (PAR1). PAR1 signaling is involved in the development of DN via TRPC6-mediated intracellular calcium signaling. This study provides fundamental knowledge that can be used to develop efficient therapeutic approaches targeting serine proteases or corresponding PAR pathways to prevent or slow the progression of diabetes-associated kidney diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Podócitos , Ratos , Humanos , Animais , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptor PAR-1/uso terapêutico , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/uso terapêutico , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Trombina/metabolismo , Trombina/uso terapêutico , Ratos Wistar
7.
Head Neck Pathol ; 17(3): 658-672, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486532

RESUMO

BACKGROUND: Human papillomavirus (HPV)-associated oropharyngeal cancer occasionally has a poor prognosis, making prognostic risk stratification crucial. Protease-activated receptor-1 (PAR1) is involved in carcinogenesis, and its expression is regulated by alpha-arrestin domain-containing protein 3 (ARRDC3). It is also involved in the tumor microenvironment. We sought to evaluate the predictive ability of PAR1, ARRDC3, and tumor-infiltrating lymphocyte (TIL) scores in patients with oropharyngeal, hypopharyngeal, and uterine cervical cancers, serving as comparators for HPV-associated oropharyngeal cancer. METHODS: Immunohistochemical analysis of p16, ARRDC3, and PAR1 expression was performed on 79 oropharyngeal, 44 hypopharyngeal, and 42 uterine cervical cancer samples. The TIL scores were assessed and classified into the following groups based on invasion: low: 0-10%, medium: 20-40%, and high: > 50%. For prognostic analysis, the three groups were evaluated by dividing them into low, medium, and high categories, or alternatively into two groups using the median value as the cutoff. RESULTS: p16 was expressed in 44 (56%) oropharyngeal, 8 (18%) hypopharyngeal, and all uterine cervical cancer samples. ARRDC3 was detected in 39 (49%) oropharyngeal, 25 (57%) hypopharyngeal, and 23 (55%) uterine cervical cancer samples. PAR1 was expressed in 45 (57%) oropharyngeal, 22 (50%) hypopharyngeal, and 22 (50%) uterine cervical cancer samples. Patients diagnosed with p16-positive oropharyngeal cancer had a substantially improved prognosis compared to those diagnosed with p16-negative cancer. The PAR1-negative cases had a considerably improved prognosis compared to the positive cases (disease-specific survival [DSS] and -negative cases (disease-free survival [DFS]). Multivariate analysis revealed that ARRDC3-positive cases had an appreciably better DSS prognosis than patients with p16-negative oropharyngeal cancers. PAR1-positive patients among patients with p16-positive oropharyngeal cancer had a poor prognosis. With respect to DFS, patients with PAR1-positive and p16-negative oropharyngeal cancer had a 35-fold higher recurrence rate than those with PAR1-negative and p16-negative oropharyngeal cancer. CONCLUSION: Our results suggest that PAR1 expression affects the prognosis and recurrence rate of HPV-associated oropharyngeal cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Receptor PAR-1 , Neoplasias do Colo do Útero , Feminino , Humanos , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/análise , Papillomavirus Humano , Neoplasias Orofaríngeas/patologia , Infecções por Papillomavirus/diagnóstico , Prognóstico , Receptor PAR-1/genética , Microambiente Tumoral
8.
Am J Physiol Cell Physiol ; 325(1): C272-C285, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273236

RESUMO

Proteinase-activated receptors (PARs) are G protein-coupled receptors (GPCRs) activated by limited n-terminal proteolysis. PARs are highly expressed in many cancer cells, including prostate cancer (PCa), and regulate various aspects of tumor growth and metastasis. Specific activators of PARs in different physiological and pathophysiological contexts remain poorly defined. In this study, we examined the androgen-independent human prostatic cancer cell line PC3 and find the functional expression of PAR1 and PAR2, but not PAR4. Using genetically encoded PAR cleavage biosensors, we showed that PC3 cells secrete proteolytic enzymes that cleave PARs and trigger autocrine signaling. CRISPR/Cas9 targeting of PAR1 and PAR2 combined with microarray analysis revealed genes that are regulated through this autocrine signaling mechanism. We found several genes that are known PCa prognostic factors or biomarker to be differentially expressed in the PAR1-knockout (KO) and PAR2-KO PC3 cells. We further examined PAR1 and PAR2 regulation of PCa cell proliferation and migration and found that absence of PAR1 promotes PC3 cell migration and suppresses cell proliferation, whereas PAR2 deficiency showed opposite effects. Overall, these results demonstrate that autocrine signaling through PARs is an important regulator of PCa cell function.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células PC-3 , Comunicação Autócrina , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Neoplasias da Próstata/genética
9.
Arterioscler Thromb Vasc Biol ; 43(8): 1441-1454, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317855

RESUMO

BACKGROUND: Endothelial CLICs (chloride intracellular channel proteins) CLIC1 and CLIC4 are required for the GPCRs (G-protein-coupled receptors) S1PR1 (sphingosine-1-phosphate receptor 1) and S1PR3 to activate the small GTPases Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA (Ras homolog family member A). To determine whether CLIC1 and CLIC4 function in additional endothelial GPCR pathways, we evaluated CLIC function in thrombin signaling via the thrombin-regulated PAR1 (protease-activated receptor 1) and downstream effector RhoA. METHODS: We assessed the ability of CLIC1 and CLIC4 to relocalize to cell membranes in response to thrombin in human umbilical vein endothelial cells (HUVEC). We examined CLIC1 and CLIC4 function in HUVEC by knocking down expression of each CLIC protein and compared thrombin-mediated RhoA or Rac1 activation, ERM (ezrin/radixin/moesin) phosphorylation, and endothelial barrier modulation in control and CLIC knockdown HUVEC. We generated a conditional murine allele of Clic4 and examined PAR1-mediated lung microvascular permeability and retinal angiogenesis in mice with endothelial-specific loss of Clic4. RESULTS: Thrombin promoted relocalization of CLIC4, but not CLIC1, to HUVEC membranes. Knockdown of CLIC4 in HUVEC reduced thrombin-mediated RhoA activation, ERM phosphorylation, and endothelial barrier disruption. Knockdown of CLIC1 did not reduce thrombin-mediated RhoA activity but prolonged the RhoA and endothelial barrier response to thrombin. Endothelial-specific deletion of Clic4 in mice reduced lung edema and microvascular permeability induced by PAR1 activating peptide. CONCLUSIONS: CLIC4 is a critical effector of endothelial PAR1 signaling and is required to regulate RhoA-mediated endothelial barrier disruption in cultured endothelial cells and murine lung endothelium. CLIC1 was not critical for thrombin-mediated barrier disruption but contributed to the barrier recovery phase after thrombin treatment.


Assuntos
Receptor PAR-1 , Proteína rhoA de Ligação ao GTP , Humanos , Camundongos , Animais , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Proteínas Mitocondriais/metabolismo
10.
Int J Cancer ; 153(4): 867-881, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139608

RESUMO

We aimed to study mRNA levels and prognostic impact of all 15 human kallikrein-related peptidases (KLKs) and their targets, proteinase-activated receptors (PARs), in surgically treated prostate cancer (PCa). Seventy-nine patients with localized grade group 2-4 PCas represented aggressive cases, based on metastatic progression during median follow-up of 11 years. Eighty-six patients with similar baseline characteristics, but no metastasis during follow-up, were assigned as controls. Transcript counts were detected with nCounter technology. KLK12 protein expression was investigated with immunohistochemistry. The effects of KLK12 and KLK15 were studied in LNCaP cells using RNA interference. KLK3, -2, -4, -11, -15, -10 and -12 mRNA, in decreasing order, were expressed over limit of detection (LOD). The expression of KLK2, -3, -4 and -15 was decreased and KLK12 increased in aggressive cancers, compared to controls (P < .05). Low KLK2, -3 and -15 expression was associated with short metastasis-free survival (P < .05) in Kaplan-Meier analysis. PAR1 and -2 were expressed over LOD, and PAR1 expression was higher, and PAR2 lower, in aggressive cases than controls. Together, KLKs and PARs improved classification of metastatic and lethal disease over grade, pathological stage and prostate-specific antigen combined, in random forest analyses. Strong KLK12 immunohistochemical staining was associated with short metastasis-free and PCa-specific survival in Kaplan-Meier analysis (P < .05). Knock-down of KLK15 reduced colony formation of LNCaP cells grown on Matrigel basement membrane preparation. These results support the involvement of several KLKs in PCa progression, highlighting, that they may serve as prognostic PCa biomarkers.


Assuntos
Neoplasias da Próstata , Receptor PAR-1 , Masculino , Humanos , Prognóstico , Receptor PAR-1/genética , Calicreínas/genética , Calicreínas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Antígeno Prostático Específico , RNA Mensageiro/genética
11.
Mol Cell Endocrinol ; 572: 111953, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172885

RESUMO

Tubulointerstitial fibrosis (TIF) makes a key role in diabetic kidney disease (DKD). In this study, we revealed that the expressions of Egr1 and protease-activated receptor 1 (PAR1) were increased in renal tissues of DKD rats. In vitro experiments demonstrated that both Egr1 overexpression and high glucose (HG) condition could promote the expressions of PAR1, fibronectin (FN) and collagen I (COL I). Furthermore, HG stimulation enhanced the binding capacity of Egr1 to PAR1 promoter. Both HG condition and Egr1 upregulation could increase, and thrombin inhibitor did not affect activity of TGF-ß1/Smad pathway via PAR1. Collectively, Egr1 is involved in TIF of DKD partly through activating TGF-ß1/Smad pathway via transcriptional regulation of PAR1 in HG treated HK-2 cells.


Assuntos
Receptor PAR-1 , Fator de Crescimento Transformador beta1 , Ratos , Animais , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação da Expressão Gênica , Fibrose , Glucose/farmacologia
12.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119474, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030452

RESUMO

In the central nervous system, thrombin-mediated activation of protease-activated receptors (PARs) results in neuroinflammation and increased vascular permeability. These events have been linked to cancer and neurodegeneration. Endothelial cells (ECs) isolated from sporadic cerebral cavernous malformation (CCM) specimens showed dysregulation of genes involved in "thrombin-mediated PAR-1 activation" signaling. CCM is a vascular disease involving brain capillaries. In CCM, ECs show defective cell junctions. Oxidative stress and neuroinflammation play a key role in disease onset and progression. In order to confirm the possible role of thrombin pathway in sporadic CCM pathogenesis, we evaluated PARs expression in CCM-ECs. We found that sporadic CCM-ECs overexpress PAR1, PAR3 and PAR4, together with other coagulation factor encoding genes. Moreover, we investigated about expression of the three familial CCM genes (KRIT1, CCM2 and PDCD10) in human cerebral microvascular ECs, following thrombin exposure, as well as protein level. Thrombin exposure affects EC viability and results in dysregulation of CCM gene expression and, then, in decreased protein level. Our results confirm amplification of PAR pathway in CCM suggesting, for the first time, the possible role of PAR1-mediated thrombin signaling in sporadic CCM. Thrombin-mediated PARs over activation results in increased blood-brain barrier permeability due to loss of cell junction integrity and, in this context, also the three familial CCM genes may be involved.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/farmacologia , Proteínas Proto-Oncogênicas/genética
13.
Kidney Int ; 104(2): 265-278, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36940798

RESUMO

About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Podócitos , Animais , Humanos , Podócitos/patologia , Síndrome Nefrótica/patologia , Glomerulosclerose Segmentar e Focal/patologia , Canal de Cátion TRPC6/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Modelos Animais de Doenças , Recidiva
14.
Nephrol Dial Transplant ; 38(10): 2232-2247, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36914214

RESUMO

BACKGROUND: Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis. METHODS: We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition. RESULTS: During the early phase of AKI, PAR-1-deficient mice exhibited reduced kidney inflammation, vascular injury, and preserved endothelial integrity and capillary permeability. During the transition phase to CKD, PAR-1 deficiency preserved kidney function and diminished tubulointerstitial fibrosis via downregulated transforming growth factor-ß/Smad signaling. Maladaptive repair in the microvasculature after AKI further exacerbated focal hypoxia with capillary rarefaction, which was rescued by stabilization of hypoxia-inducible factor and increased tubular vascular endothelial growth factor A in PAR-1-deficient mice. Chronic inflammation was also prevented with reduced kidney infiltration by both M1- and M2-polarized macrophages. In thrombin-induced human dermal microvascular endothelial cells (HDMECs), PAR-1 mediated vascular injury through activation of NF-κB and ERK MAPK pathways. Gene silencing of PAR-1 exerted microvascular protection via a tubulovascular crosstalk mechanism during hypoxia in HDMECs. Finally, pharmacologic blockade of PAR-1 with vorapaxar improved kidney morphology, promoted vascular regenerative capacity, and reduced inflammation and fibrosis depending on the time of initiation. CONCLUSIONS: Our findings elucidate a detrimental role of PAR-1 in vascular dysfunction and profibrotic responses upon tissue injury during AKI-to-CKD transition and provide an attractive therapeutic strategy for post-injury repair in AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Células Endoteliais/metabolismo , Fibrose , Hipóxia , Inflamação/patologia , Rim , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Trombina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
15.
J Cell Physiol ; 238(4): 776-789, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791026

RESUMO

Protease-activated receptor-1 & -2 (PAR1 and PAR2) are expressed widely in cardiovascular tissues including endothelial and smooth muscle cells. PAR1 and PAR2 may regulate blood pressure via changes in vascular contraction or relaxation mediated by endothelial Ca2+ signaling, but the mechanisms are incompletely understood. By using single-cell Ca2+ imaging across hundreds of endothelial cells in intact blood vessels, we explored PAR-mediated regulation of blood vessel function using PAR1 and PAR2 activators. We show that PAR2 activation evoked multicellular Ca2+ waves that propagated across the endothelium. The PAR2-evoked Ca2+ waves were temporally distinct from those generated by muscarinic receptor activation. PAR2 activated distinct clusters of endothelial cells, and these cells were different from those activated by muscarinic receptor stimulation. These results indicate that distinct cell clusters facilitate spatial segregation of endothelial signal processing. We also demonstrate that PAR2 is a phospholipase C-coupled receptor that evokes Ca2+ release from the IP3 -sensitive store in endothelial cells. A physiological consequence of this PAR2 signaling system is endothelium-dependent relaxation. Conversely, PAR1 activation did not trigger endothelial cell Ca2+ signaling nor relax or contract mesenteric arteries. Neither did PAR1 activators alter the response to PAR2 or muscarinic receptor activation. Collectively, these results suggest that endothelial PAR2 but not PAR1 evokes mesenteric artery relaxation by evoking IP3 -mediated Ca2+ release from the internal store. Sensing mediated by PAR2 receptors is distributed to spatially separated clusters of endothelial cells.


Assuntos
Células Endoteliais , Receptor PAR-2 , Artérias , Endotélio Vascular , Receptor PAR-1/genética , Receptor PAR-2/genética , Animais , Ratos
16.
Genes (Basel) ; 14(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36833388

RESUMO

Non-small cell lung cancer (NSCLC) accounts for the vast majority of cases of lung neoplasms. It is formed in multiple stages, with interactions between environmental risk factors and individual genetic susceptibility and with genes involved in the immune and inflammatory response paths, cell or genome stability, and metabolism, among others. Our objective was to evaluate the association between five genetic variants (IL-1A, NFKB1, PAR1, TP53, and UCP2) and the development of NSCLC in the Brazilian Amazon. The study included 263 individuals with and without lung cancer. The samples were analyzed for the genetic variants of NFKB1 (rs28362491), PAR1 (rs11267092), TP53 (rs17878362), IL-1A (rs3783553), and UCP2 (INDEL 45-bp), which were genotyped in PCR, followed by an analysis of the fragments, in which we applied a previously developed set of informative ancestral markers. We used a logistic regression model to identify differences in the allele and the genotypic frequencies among individuals and their association with NSCLC. The variables of gender, age, and smoking were controlled in the multivariate analysis to prevent confusion by association. The individuals that were homozygous for the Del/Del of polymorphism NFKB1 (rs28362491) (p = 0.018; OR = 0.332) demonstrate a significant association with NSCLC, which was similar to that observed in the variants of PAR1 (rs11267092) (p = 0.023; OR = 0.471) and TP53 (rs17878362) (p = 0.041; OR = 0.510). Moreover, the individuals with the Ins/Ins genotype of polymorphism IL-1A (rs3783553) demonstrated greater risk for NSCLC (p = 0.033; OR = 2.002), as did the volunteers with the Del/Del of UCP2 (INDEL 45-bp) (p = 0.031; OR = 2.031). The five polymorphisms investigated can contribute towards NSCLC susceptibility in the population of the Brazilian Amazon.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Subunidade p50 de NF-kappa B , Receptor PAR-1 , Proteína Supressora de Tumor p53 , Proteína Desacopladora 2 , Humanos , Brasil/epidemiologia , Subunidade p50 de NF-kappa B/genética , Polimorfismo Genético , Receptor PAR-1/genética , Proteína Supressora de Tumor p53/genética
17.
J Thromb Haemost ; 21(1): 133-144, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695376

RESUMO

BACKGROUND: In addition to its anticoagulant function in downregulating thrombin generation, activated protein C (APC) evokes pleiotropic cytoprotective signaling activities when it binds to endothelial protein C receptor (EPCR) to activate protease-activated receptor 1 (PAR1) in endothelial cells. OBJECTIVES: To investigate the protective effect of APC in a chlorhexidine gluconate (CG)-induced peritoneal fibrosis model. METHODS: Peritoneal fibrosis was induced in wild-type as well as EPCR- and PAR1-deficient mice via daily injection of CG (0.2 mL of 0.1% CG in 15% ethanol and 85% saline) for 21 days with or without concomitant injection of recombinant human APC derivatives (50 µg/kg of bodyweight). The expression of proinflammatory cytokines and profibrotic markers as well as collagen deposition were analyzed using established methods. RESULTS: CG significantly upregulated the expression of transforming growth factor-ß1 in peritoneal tissues, which culminated in the deposition of excessive extracellular matrix proteins, thickening of the peritoneal membrane, and mesothelial-to-mesenchymal transition in damaged tissues. APC potently inhibited CG-induced peritoneal fibrosis and downregulated the expression of proinflammatory cytokines, collagen deposition, Smad3 phosphorylation, and markers of mesothelial-to-mesenchymal transition (α-smooth muscle actin, vimentin, and N-cadherin). APC also inhibited transforming growth factor-ß1-mediated upregulation of α-smooth muscle actin, Smad3, and fibronectin in human primary mesothelial cells. Employing signaling-selective and anticoagulant-selective variants of APC and mutant mice deficient for either EPCR or PAR1, we demonstrated that the EPCR-dependent signaling function of APC through PAR1 activation was primarily responsible for its antifibrotic activity in the CG-induced peritoneal fibrosis model. CONCLUSION: APC and signaling-selective variants of APC may have therapeutic potential for preventing or treating pathologies associated with peritoneal fibrosis.


Assuntos
Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/genética , Fibrose Peritoneal/prevenção & controle , Fator de Crescimento Transformador beta1 , Receptor de Proteína C Endotelial/metabolismo , Células Endoteliais/metabolismo , Proteína C/metabolismo , Actinas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Citocinas/metabolismo , Anticoagulantes/efeitos adversos
18.
Blood Adv ; 7(10): 1945-1953, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-36477178

RESUMO

The chemotherapeutic drug doxorubicin is cardiotoxic and can cause irreversible heart failure. In addition to being cardiotoxic, doxorubicin also induces the activation of coagulation. We determined the effect of thrombin-mediated activation of protease-activated receptor 1 (PAR1) on doxorubicin-induced cardiac injury. Administration of doxorubicin to mice resulted in a significant increase in plasma prothrombin fragment 1+2, thrombin-antithrombin complexes, and extracellular vesicle tissue factor activity. Doxorubicin-treated mice expressing low levels of tissue factor, but not factor XII-deficient mice, had reduced plasma thrombin-antithrombin complexes compared to controls. To evaluate the role of thrombin-mediated activation of PAR1, transgenic mice insensitive to thrombin (Par1R41Q) or activated protein C (Par1R46Q) were subjected to acute and chronic models of doxorubicin-induced cardiac injury and compared with Par1 wild-type (Par1+/+) and PAR1 deficient (Par1-/-) mice. Par1R41Q and Par1-/- mice, but not Par1R46Q mice, demonstrated similar reductions in the cardiac injury marker cardiac troponin I, preserved cardiac function, and reduced cardiac fibrosis compared to Par1+/+ controls after administration of doxorubicin. Furthermore, inhibition of Gαq signaling downstream of PAR1 with the small molecule inhibitor Q94 significantly preserved cardiac function in Par1+/+ mice, but not in Par1R41Q mice subjected to the acute model of cardiac injury when compared to vehicle controls. In addition, mice with PAR1 deleted in either cardiomyocytes or cardiac fibroblasts demonstrated reduced cardiac injury compared to controls. Taken together, these data suggest that thrombin-mediated activation of PAR1 contributes to doxorubicin-induced cardiac injury.


Assuntos
Receptor PAR-1 , Trombina , Camundongos , Animais , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/metabolismo , Tromboplastina , Doxorrubicina/efeitos adversos , Antitrombinas
19.
Int J Med Sci ; 19(13): 1835-1846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438913

RESUMO

Objective: To determine the effect and mechanism of the long non-coding RNA (lncRNA) ncRuPAR (non-protein coding RNA, upstream of coagulation factor II thrombin receptor [F2R]/protease-activated receptor-1 [PAR-1]) in human gastric cancer. Methods: HGC-27-ncRuPAR overexpression and MGC-803-ncRuPAR-RNAi knockdown gastric cancer cell lines were established. We assessed the effect of ncRuPAR on cell proliferation, apoptosis, migration, and invasion using Cell Counting Kit 8, flow cytometry, scratch and transwell assays, respectively. Differentially expressed genes in HGC-27-ncRuPAR overexpression and HGC-27-empty vector cell lines were identified using Affymetrix GeneChip microarray analysis. Ingenuity Pathway Analysis (IPA) of the microarray results was subsequently conducted to identify ncRuPAR-enriched pathways, followed by validation using real time-quantitative PCR (RT-qPCR). As one of the top enriched pathways, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was further examined by western blotting to determine its role in ncRuPAR-mediated regulation of gastric cancer pathogenesis. Results: ncRuPAR inhibited human gastric cancer cell proliferation and induced G1/S phase arrest and apoptosis, but did not affect migration or invasion in vitro. Overexpression of ncRuPAR in vitro was found to inhibit its known target PAR-1, as well as PI3K/Akt signaling. The downstream targets of PI3K/Akt, cyclin D1 was downregulated, but there was no change in expression level of B-cell lymphoma 2 (Bcl-2). Conclusions: We showed that lncRNA-ncRuPAR could inhibit tumor cell proliferation and promote apoptosis of human gastric cancer cells, potentially by inhibiting PAR-1, PI3K/Akt signaling, and cyclin D1. The results suggest a potential role for lncRNAs as key regulatory hubs in GC progression.


Assuntos
RNA Longo não Codificante , Receptor PAR-1 , Neoplasias Gástricas , Humanos , Apoptose/genética , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
20.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430902

RESUMO

AIMS: G protein-coupled receptor (GPCR) transactivation of kinase receptors greatly expands the actions attributable to GPCRs. Thrombin, via its cognate GPCR, protease-activated receptor (PAR)-1, transactivates tyrosine and serine/threonine kinase receptors, specifically the epidermal growth factor receptor and transforming growth factor-ß receptor, respectively. PAR-1 transactivation-dependent signalling leads to the modification of lipid-binding proteoglycans involved in the retention of lipids and the development of atherosclerosis. The mechanisms of GPCR transactivation of kinase receptors are distinct. We aimed to investigate the role of proximal G proteins in transactivation-dependent signalling. MAIN METHODS: Using pharmacological and molecular approaches, we studied the role of the G⍺ subunits, G⍺q and G⍺11, in the context of PAR-1 transactivation-dependent signalling leading to proteoglycan modifications. KEY FINDINGS: Pan G⍺q subunit inhibitor UBO-QIC/FR900359 inhibited PAR-1 transactivation of kinase receptors and proteoglycans modification. The G⍺q/11 inhibitor YM254890 did not affect PAR-1 transactivation pathways. Molecular approaches revealed that of the two highly homogenous G⍺q members, G⍺q and G⍺11, only the G⍺q was involved in regulating PAR-1 mediated proteoglycan modification. Although G⍺q and G⍺11 share approximately 90% homology at the protein level, we show that the two isoforms exhibit different functional roles. SIGNIFICANCE: Our findings may be extrapolated to other GPCRs involved in vascular pathology and highlight the need for novel pharmacological tools to assess the role of G proteins in GPCR signalling to expand the preeminent position of GPCRs in human therapeutics.


Assuntos
Músculo Liso Vascular , Receptor PAR-1 , Humanos , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Músculo Liso Vascular/metabolismo , Ativação Transcricional , Proteínas de Ligação ao GTP/metabolismo , Proteoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...